If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+14x+46=0
We add all the numbers together, and all the variables
x^2+14x+46=0
a = 1; b = 14; c = +46;
Δ = b2-4ac
Δ = 142-4·1·46
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{3}}{2*1}=\frac{-14-2\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{3}}{2*1}=\frac{-14+2\sqrt{3}}{2} $
| 2x+x+x=24 | | 2p+13p-7p-13p=-10 | | d3− 2= 2 | | 8f^2+24f+18=0 | | 2=4−2f | | 1x^2+6x+4=0 | | h4− 1= 2 | | (x-18)+(5x)=180 | | 9m-7m-m=20 | | 3-2(2-x)=5x+5 | | 9−2y=1 | | 6(-7x+32)=-38(18+8x) | | 2d−2=6 | | 12r−8−12= | | 7/5y=2=4 | | 40=2(4p+2)-4(5-5p) | | 74x-34=-36+74x | | 3(n-5)=7(n+1) | | 1x^2+6x-1=0 | | -u/6=36 | | 4m-3m=13 | | 7y=2y^2-4 | | 2x²+x²+x+10=-5x-15 | | -7y=2y^2-4 | | 4x^2-15=-17X | | 16(-3x+3)=-12(-12+4x) | | 9/2+3x=10 | | x+1=2(x+4) | | 16(-3x+3)=-12(-12=4x) | | 7b+2=2b+17 | | 5w-10=85 | | 2x/5=0,8 |